QUÉ ES EL CRISTAL:
La fusión de arena silícea con potasio y minio; se usa para hacer prismas, lentes, vajilla fina, etc.
Cuerpo formado por un medio especial, la materia cristalina, caracterizada por una propiedad fundamental: la periodicidad. Los cristales son cuerpos sólidos formados a partir de sustancias fundidas, líquidas o gaseosas, por diversas formas de crecimiento y presentan una forma más o menos regular con caras, vértices y aristas definidas. Interiormente están constituidos por partículas que guardan entre sí relaciones y distancias fijas. Se estudian, en su aspecto externo, mediante mediciones en los ángulos que forman sus caras, e interiormente con los rayos X.
cristal hilado Cristal o vidrio fundido y estirado en forma de hilos.
Vidrio pesado, brillante y muy transparente -
Hoja de cristal o vidrio con que se forman las vidrieras, ventanas, etc.
Objeto de cristal.
1). INDUSTRIA : VÍDRIO INCOLORO Y TRANSPARENTE ( de alta calidad ) ,ejemplo : copas de cristal
2).VÍDRIO EN LÁMINAS (Cristaleras,que cubren la abertura de una ventana
3) LENTES DE ÓPTICA :
Las lentes pueden ser usadas para enfocar la luz.
Las lentes son objetos transparentes (normalmente de vidrio), limitados por dos superficies, de las que al menos una es curva.
Las lentes más comunes están basadas en el distinto grado de refracción que experimentan los rayos al incidir en puntos diferentes del lente. Entre ellas están las utilizadas para corregir los problemas de visión en gafas, anteojos o lentillas. También se usan lentes, o combinaciones de lentes y espejos,
en telescopios
y microscopios.
El primer telescopio astronómico fue construido por Galileo Galilei usando una lente convergente (lente positiva) como objetivo y otra divergente (lente negativa) como ocular. Existen también instrumentos capaces de hacer converger o divergir otros tipos de ondas electromagnéticas y a los que se les denomina también lentes. Por ejemplo, en los microscopios electrónicos las lentes son de carácter magnético.
En astrofísica es posible observar fenómenos de lentes gravitatorias, cuando la luz procedente de objetos muy lejanos pasa cerca de objetos masivos, y se curva en su trayectoria.
La palabra lente proviene del latín "lens, lentis" que significa "lenteja" con lo que a las lentes ópticas se las denomina así por parecido de forma con la legumbre.
En el siglo XIII empezaron a fabricarse pequeños discos de vidrio que podían montarse sobre un marco. Fueron las primeras gafas de libros o gafas de lectura.
LENTES CÓNCAVAS Y LENTES CONVEXAS
TIPOS DE LENTES :
Las lentes, según la forma que adopten pueden ser convergentes o divergentes.
Las lentes convergentes (o positivas) son más gruesas por su parte central y más estrechas en los bordes. Se denominan así debido a que unen (convergen), en un punto determinado que se denomina foco imagen, todo haz de rayos paralelos al eje principal que pase por ellas.
Pueden ser:
a)Biconvexas
b)Planoconvexas
c)Cóncavo-convexas
Las lentes divergentes (o negativas) son más gruesas por los bordes y presentan una estrechez muy pronunciada en el centro. Se denominan así porque hacen diverger (separan) todo haz de rayos paralelos al eje principal que pase por ellas, sus prolongaciones convergen en el foco imagen que está a la izquierda, al contrario que las convergentes, cuyo foco imagen se encuentra a la derecha.
Pueden ser:
a)Bicóncavas
b)Planocóncavas
c )Convexo-cóncavas
Elementos de una Lente :
a) Centro Óptico, donde todo rayo que pasa por él, no sufre desviación.
b) Eje Principal, es la recta que pasa por el centro óptico y por el foco principal.
c) Foco Principal, punto en donde pasan los rayos que son paralelos al eje principal.
d) Eje Secundario, es la recta que pasa por los centros de curvatura.
e) Radios de Curvatura(R1,R2):Son los radios de las esferas que originan la lente.
f) Centros de Curvatura(C1,C2):Son los centros de las esferas que originan la lente.
Rayos notables en las lentes convergentes[editar]
1º. Rayo paralelo al eje principal se refracta y pasa por el foco.
2º. El rayo que pasa por el foco principal se refracta y sigue paralelo al eje principal.
3º. Todo rayo que pase por el centro óptico no sufre desviación.
Formación de Imágenes en las Lentes
Para estudiar la formación de imágenes por lentes, es necesario mencionar algunas de las características que permiten describir de forma sencilla la marcha de los rayos:
1) Plano óptico. Es el plano central de la lente.
2 )Centro óptico O. Es el centro geométrico de la lente. Tiene la propiedad de que todo rayo que pasa por él no sufre desviación alguna.
3 )Eje principal. Es la recta que pasa por el centro óptico y es perpendicular al plano óptico.
4 )Focos principales F y F' (foco objeto y foco imagen, respectivamente). Son un par de puntos, correspondientes uno a cada superficie, en donde se cruzan los rayos (o sus prolongaciones) que inciden sobre la lente paralelamente al eje principal.
5 )Distancia focal f. Es la distancia entre el centro óptico O y el foco F.
Lentes convergentes. Para proceder a la construcción de imágenes debidas a lentes convergentes, se deben tener presente las siguientes reglas:
Cuando un rayo incide sobre la lente paralelamente al eje, el rayo emergente pasa por el foco imagen F'. Inversamente, cuando un rayo incidente pasa por el foco objeto F, el rayo emergente discurre paralelamente al eje. Finalmente, cualquier rayo que se dirija a la lente pasando por el centro óptico se refracta sin sufrir ninguna desviación.
Lente convergente :
Cuando se aplican estas reglas sencillas para determinar la imagen de un objeto por una lente convergente, se obtienen los siguientes resultados:
- Si el objeto está situado respecto del plano óptico a una, la imagen es real, invertida y de menor tamaño.
- Si el objeto está situado a una distancia del plano óptico igual a 2f, la imagen es real, invertida y de igual tamaño.
- Si el objeto está situado a una distancia del plano óptico comprendida entre 2f y f, la imagen es real, invertida y de mayor tamaño.
- Si el objeto está situado a una distancia del plano óptico inferior a f, la imagen es virtual, directa y de mayor tamaño.
Lentes divergentes :
La construcción de imágenes formadas por lentes divergentes se lleva a cabo de forma semejante, teniendo en cuenta que cuando un rayo incide sobre la lente paralelamente al eje, es la prolongación del rayo emergente la que pasa por el foco objeto F. Asimismo, cuando un rayo incidente se dirige hacia el foco imagen F' de modo que su prolongación pase por él, el rayo emergente discurre paralelamente al eje. Finalmente y al igual que sucede en las lentes convergentes, cualquier rayo que se dirija a la lente pasando por el centro óptico se refracta sin sufrir desviación.
Lentes diverxentes
Según el valor de los radios de las caras (que son dioptrios) pueden ser: bicóncavas (4), plano cóncavas (5) y menisco divergente (6).
En esta foto vemos dos lentes de las que existen en los laboratorios de óptica.
Aunque para lentes divergentes se tiene siempre que la imagen resultante es virtual, directa y de menor tamaño, la aplicación de estas reglas permite obtener fácilmente la imagen de un objeto situado a cualquier distancia de la lente.
Construcción gráfica de imágenes en las lentes convergentes :
¤ Imágenes reales, son aquellas capaces de ser recibidas sobre una pantalla ubicada en tal forma de que entre ella y el objeto quede la lente.
¤ Imagen virtual, está dada por la prolongación de los rayos refractados, no se puede recibir la imagen en una pantalla.
1º. El objeto está a una distancia doble de la distancia focal. La imagen obtenida es: real, invertida, de igual tamaño, y también a distancia doble de la focal.
2º. El objeto está a distancia mayor que el doble de la distancia focal. Resulta una imagen: real invertida, menor, formada a distancia menor que el objeto.
3º. El objeto está entre el foco y el doble de la distancia focal. La imagen obtenida es: real invertida, mayor, y se forma a mayor distancia que el doble de la focal.
4º. El objeto está entre el foco y el centro óptico. Se obtiene una imagen: virtual, mayor, derecha, formada del lado donde se coloca el objeto.
5º. El objeto está en el foco principal, no se obtiene ninguna imagen
PROPIEDADES FÍSICAS, SIMETRÍA: LEYES DE PIERRE CURIE Y PROPIEDADES ÓPTICAS NO LINEALES
Las relaciones que existen entre los fenómenos físicos y la simetría se conocen desde hace tiempo, pero fueron concretadas a del S.XIX, por Pierre Curie, que las expresó en forma de principios que suelen llamarse leyes de Curie. En general puede considerarse que un fenómeno físico traduce una relación de causa a efecto. Curie planteó en principio que la dismetría que se encuentra en los efectos debe preexistir en las causas, pero que, por el contrario, los efectos pueden ser más simétricos que las causas.
A partir de estas consideraciones es posible demostrar que ciertas simetrías cristalinas son incompatibles con la existencia de ciertas propiedades físicas. Por ejemplo, un cristal no puede estar dotado de poder rotatorio si es superponible a su imagen en un espejo; del mismo modo un cristal es piroeléctrico, es decir, posee una polarización eléctricaespontánea, sólo si pertenece a uno entre diez de los 32 grupos cristalográficos.
A partir de un razonamiento que afecta a esas consideraciones de simetría, Curie descubrió la piezoelectricidad, es decir, la presencia de una polarización eléctrica cuando se aplica una presión. Ese efecto, que, en particular, no puede aparecer en los cristales que poseen un centro de simetría, ha sido objeto de un gran número de aplicaciones (osciladores, relojes de cuarzo, cabezales de fonocaptores, micrófonos, sonars, etc.)
http://ocw.uniovi.es/file.php/39/1C_C11812_A/contenidos%20en%20pdf%20para%20descargar/10.pdf
La cristalografía es la ciencia que se dedica al estudio y resolución de estructuras cristalinas. La mayoría de los minerales adoptan formas cristalinas cuando se forman en condiciones favorables. La cristalografía es el estudio del crecimiento, la forma y la geometría de estos cristales.
La disposición de los átomos en un cristal puede conocerse por difracción de los rayos X, de neutrones o electrones. La química cristalográfica estudia la relación entre la composición química, la disposición de los átomos y las fuerzas de enlace entre éstos. Esta relación determina las propiedades físicas y químicas de los minerales.
Cuando las condiciones son favorables, cada elemento o compuesto químico tiende a cristalizarse en una forma definida y característica. Así, la sal tiende a formar cristales cúbicos, mientras que el granate, que a veces forma también cubos, se encuentra con más frecuencia en dodecaedros o triaquisoctaedros. A pesar de sus diferentes formas de cristalización, la sal y el granate cristalizan siempre en la misma clase y sistema.
En teoría son posibles treinta y dos clases cristalinas, pero sólo una docena incluye prácticamente a todos los minerales comunes y algunas clases nunca se han observado. Estas treinta y dos clases se agrupan en seis sistemas cristalinos, caracterizados por la longitud y posición de sus ejes. Los minerales de cada sistema comparten algunas características de simetría y forma cristalina, así como muchas propiedades ópticas importantes.
Un material cristalino es aquel en el que los átomos se estructuran en redes basadas en la repetición tridimensional de sus componentes. A la estructura que se repite se le denomina célula o celda cristalina. Los cristales se clasifican según sean las propiedades de simetría de la célula cristalina. Estas propiedades de simetría también se manifiestan en ocasiones en simetrías macroscópicas de los cristales, como formas geométricas o planos de fractura. El estudio de la cristalografía requiere un cierto conocimiento del grupo de simetría.
Elementos de simetría
Las celdas fundamentales de un cristal presentan elementos de simetría, que son:
( Eje de simetría: es una línea imaginaria que pasa a través del cristal, alrededor de la cual, al realizar éste un giro completo, repite dos o más veces el mismo aspecto )
.
Los ejes pueden ser:
monarios, si giran el motivo una vez (360º);
binarios, si lo giran dos veces (180º);
ternarios, si lo giran tres veces (120º);
cuaternarios, si lo giran cuatro veces (90º);
senarios, si giran el motivo seis veces (60º).
Plano de simetría:
es un plano imaginario que divide el cristal en dos mitades simétricas especulares, como el reflejo en un espejo, dentro de la celda. Puede haber múltiples planos de simetría. Se representa con la letra m.
Centro de simetría: es un punto dentro de la celda que, al unirlo con cualquiera de la superficie, repite al otro lado del centro y a la misma distancia un punto similar.
Sistemas cristalinos:
todas la redes cristalinas, al igual que los cristales, que son una consecuencia de las redes, presentan elementos de simetría. Si se clasifican los 230 grupos espaciales según los elementos de simetría que poseen, se obtienen 32 clases de simetría (cada una de las cuales reúne todas las formas cristalinas que poseen los mismos elementos de simetría) es decir, regular o cúbico, tetragonal, hexagonal, romboédrico, rómbico, monoclínico y triclínico.
Tipos de cristales :
1) CRISTALES SÓLIDOS
Aparte del vidrio y las sustancias amorfas, cuya estructura no aparece ordenada sino corrida, toda la materia sólida se encuentra en estado cristalino. En general, se presenta en forma de agregado de pequeños cristales(o policristalinos) como en el hielo, la rocas muy duras, los ladrillos, el hormigón, los plásticos, los metales muy proporcionales, los huesos, etc., o mal cristalizados como las fibras de madera corridas.
También pueden constituir cristales únicos de dimensiones minúsculas como el azúcar o la sal, las piedras preciosas y la mayoría de los minerales, de los cuales algunos se utilizan en tecnología moderna por sus sofisticadas aplicaciones, como el cuarzo de los osciladores o los semiconductores de los dispositivos electrónicos
2) CRISTALES LÍQUIDOS :
Algunos líquidos anisótropos , denominados a veces "cristales líquidos", han de considerarse en realidad como cuerpos mesomorfos, es decir, estados de la materia intermedios entre el estado amorfo y el estado cristalino.
Los cristales líquidos se usan en pantallas (displays) de aparatos electrónicos. Su diseño más corriente consta de dos láminas de vidrio metalizado que emparedan una fina película de sustancia mesomorfa. La aplicación de una tensión eléctrica a la película provoca una intensa turbulencia que comporta una difusión local de la luz, con la cual la zona cargada se vuelve opaca. Al desaparecer la excitación, el cristal líquido recupera su transparencia.
Cristal de rubí antes de ser pulido y resanado.
VÍDRIO
TIPOS DE VÏDRIO :
En general los vidrios están compuestos por varios silicatos metálicos, presentes en distintas proporciones. En las propiedades mas características del vidrio se encuentran: Las propiedades ópticas: Los vidrios comunes son incoloros, transparentes, pero se les comunica coloración sin pérdida de transparencia. Los vidrios translúcidos son semitransparentes, objetos colocados detrás de ellos se aprecian borrosamente. Los vidrios opacos no son transparentes. Las propiedades mecánicas: Los vidrios son duros pero frágiles, es decir, no son fácilmente rayados por una punta de acero pero no resisten al golpe. Las propiedades térmicas: Cuando se calienta un sólido a la temperatura de fusión pasa el estado líquido. Resistencia a los reactivos químicos: los vidrios resisten a la acción de los reactivos químicos. Solamente les ataca el ácido fluorhídrico. ELABORACIÓN DE VIDRIOS COMUNES: Los vidrios comunes, incoloros y transparentes. Están compuestos por dos silicatos metálicos. Silicato de Sodio Silicato de Calcio Las materias primas necesarias serán: Arenas: que aportan dióxido de silicio Soda SOLVAY: carbonato de sodio decahidratado Piedra caliza: que suministra el carbonato de calcio. Las arenas deben ser blancas, de gran dureza, exentas en lo posible de óxido de hierro. Las arenas amarillentas, con alto porcentaje de óxido de hierro, producen coloraciones verdosas, como la de las botellas. Para abaratar la fabricación se recupera el vidrio de las botellas, envases y otros desechos, seleccionando desperdicios domiciliarios. Clasificados por color y calidad se incorporan a las materias primas con el nombre de cascote de vidrio. Se opera con hornos de cubeta de grandes dimensiones con capacidad para varios miles de toneladas. La llama de un combustible barre la superficie de los sólidos y eleva la temperatura. A unos 1000 o 2000º C se verifican las reacciones antedichas y se obtiene vidrio en estado líquido. Los hornos de cubeta funcionan ininterrumpidamente. Del sector mas frío y de menos profundidad, separado del resto por un tabique, se extrae el vidrio elaborado mientras en el extremo opuesto se recargan materias primas. DIFERENTES VARIEDADES DE VIDRIOS. Los vidrios de color se obtienen con sustancias agregadas a las materias primas ordinarias. Vidrios finos. Semicristales o vidrios potasio-calcicos: son brillantes y más transparentes, resisten bien la accion del agua. Su composición es el silicato de potasio. Por ejemplo: vidrios planos para exteriores, espejos y muebleria. Cristales: son vidrios compuestos por silicato de potasio y de plomo. Las materias primas son arenas seleccionadas, carbonato de potasio y óxido de plomo. Su manufactura, es controlada preparando partidas de menos de 20 toneladas. Las mencionadas materias primas se colocan dentro de crisoles de material refractario, abiertos o cerrados, los que, a su vez, se ubican dentro del horno. Vidrios borosilicatados, tipo pirex (Pyrex): sus materias primas son: Arena. Borax (tetraborato de sodio), que cuando descompone en caliente da trióxido de boro, un óxido que se comporta como el dióxido de silicio. Aluminio (óxido de aluminio), que actúa como óxido básico. Se los comercializa como “vidrio pirex”, porque pirex fue al primera marca registrada en este rubro. Son indispensables en los laboratorios y en vajilla por su elevada temperatura de ablandamiento: aproximadamente 800º C, su insuperable resistencia les permite soportar enfriamientos bruscos sin ruptura.
(Fuente: http://www.arqhys.com/construccion/vidrios-tipos.html)
Las propiedades de los cristales, como su punto de fusión, densidad y dureza están determinadas por el tipo de fuerzas que mantienen unidas a las partículas.
Se clasifican en: iónico, covalente, molecular o metálico.
]
Los "CRISTALES IÓNICOS" tienen dos características importantes: están formados de enlaces cargados y los aniones y cationes suelen ser de distinto tamaño. Son duros y a la vez quebradizos. La fuerza que los mantiene unidos es electrostática. Ejemplos: KCl, CsCl, ZnS y CF
2. La mayoría de los cristales iónicos tienen puntos de fusión altos, lo cual refleja la gran fuerza de cohesión que mantiene juntos a los iones. Su estabilidad depende en parte de su energía reticular; cuanto mayor sea esta energía, más estable será el compuesto.
[editar · editar fuente]
Los átomos de los "CRISTALES COVALENTES se mantienen unidos en una red tridimensional únicamente por enlaces covalentes. El grafito y el diamante, alótropos del carbono, son buenos ejemplos. Debido a sus enlaces covalentes fuertes en tres dimensiones, el diamante presenta una dureza particular y un elevado punto de fusión. El cuarzo es otro ejemplo de cristal covalente. La distribución de los átomos de silicio en el cuarzo es semejante a la del carbono en el diamante, pero en el cuarzo hay un átomo de oxígeno entre cada par de átomos de sil
En un "CRISTAL MOLECULAR", los puntos reticulares están ocupados por moléculas que se mantienen unidas por
fuerzas de van der Waals y/o de enlaces de hidrógeno. El dióxido de azufre (SO
2) sólido es un ejemplo de un cristal molecular al igual que los cristales de I
2, P
4 y S
8. Con excepción del hielo, los cristales moleculares suelen empaquetarse tan juntos como su forma y tamaño lo permitan. Debido a que las fuerzas de van der Waals y los enlaces de hidrógeno son más débiles que los enlaces iónicos o covalentes, los cristales moleculares suelen ser quebradizos y la mayoría funden a temperaturas menores de 10
La estructura de los "CRISTALES METÁLICOS " es más simple porque cada punto reticular del cristal está ocupado por un átomo del mismo metal. Los cristales metálicos por lo regular tienen una estructura cúbica centrada en el cuerpo o en las caras; también pueden ser hexagonales de empaquetamiento compacto, por lo que suelen ser muy densos. Sus propiedades varían de acuerdo a la especie y van desde blandos a duros y de puntos de fusión bajos a altos, pero todos en general son buenos conductores de calor y electricidad.
Los cristales presentan generalmente elementos de simetría que son ejes, planos o centros.
Un cristal es invariante con relación a un eje de orden
Q, si el conjunto de las propiedades del cristal son las mismas a lo largo de dos direcciones, que se deducen una de otra por una rotación de un
ángulo 2N/Q radianes en torno a ese eje. Por lo que, como consecuencia de su triple periocidad, se demuestra que el medio cristalino sólo puede poseer ejes de orden 2,3,4 ó 6.
Sistemas cristalinos
Si se tienen en cuenta los elementos de simetría, se pueden distinguir siete sistemas cristalinos, que toman el nombre de una figura geométrica elemental. Como son:
- Cúbico (cubo)
- Tetragonal (prisma recto cuadrangular)
- Ortorrómbico (prisma recto de base rómbica)
- Monoclínico (prisma oblicuo de base rómbica)
- Triclínico (paralelepípedo cualquiera)
- Romboédrico (paralepípedo cuyas caras son rombos)
- Hexagonal (prisma recto de base hexagonal)
Las diversas formas de un mismo cristal pueden proceder de
dislocaciones, por los vértices o por las aristas, de la forma típica. Estas modificaciones se pueden interpretar a partir del conocimiento de la estructura reticular de un cristal.
El conjunto de caras externas que limita un cristal constituye una forma cristalina. Estas caras se deducen unas de otras por acción de las operaciones de simetría del cristal.
Propiedades físicas, simetría: leyes de Pierre Curie y propiedades ópticas no lineales
Las relaciones que existen entre los fenómenos físicos y la simetría se conocen desde hace tiempo, pero fueron concretadas a del S.XIX, por Pierre Curie, que las expresó en forma de principios que suelen llamarse leyes de Curie. En general puede considerarse que un fenómeno físico traduce una relación de causa a efecto. Curie planteó en principio que la dismetría que se encuentra en los efectos debe preexistir en las causas, pero que, por el contrario, los efectos pueden ser más simétricos que las causas.
A partir de estas consideraciones es posible demostrar que ciertas simetrías cristalinas son incompatibles con la existencia de ciertas propiedades físicas. Por ejemplo, un cristal no puede estar dotado de poder
rotatorio si es superponible a su imagen en un espejo; del mismo modo un cristal es
piroeléctrico, es decir, posee una
polarización eléctricaespontánea, sólo si pertenece a uno entre diez de los 32 grupos cristalográficos.
A partir de un razonamiento que afecta a esas consideraciones de simetría, Curie descubrió la piezoelectricidad, es decir, la presencia de una polarización eléctrica cuando se aplica una presión. Ese efecto, que, en particular, no puede aparecer en los cristales que poseen un centro de simetría, ha sido objeto de un gran número de aplicaciones (osciladores, relojes de cuarzo, cabezales de fonocaptores, micrófonos, sonars, etc.).
Un sólido cristalino, o cristal, es una ordenación periódica de estructuras idénticas. La estructura idéntica que se repite, recibe el nombre de base cristalina. La estructura sobre la que se repite, el de red cristalina, (Fig.1.1).
Tres vectores, a, b y c definen una red cristalina a través de tres enteros n
1, n
2y n
3, de modo que si
es el vector de posición de un punto de la red, el expresado por:
(1.1)
también lo es. El vector
(1.2)
define el grupo de traslaciones del cristal.
Figura 1.1.- Cristal, celdilla primitiva y celdilla de Wigner- Seitz en dos dimensiones
En toda red cristalina se pueden encontrar (y no de forma única) tres vectores de forma que dos puntos reticulares cualesquiera están siempre relacionados por una expresión del tipo (1.1) con n1, n2y n3 enteros. Los vectores a, b y c que cumplen también esto, definen una celdilla que también por traslación genera el cristal. Se la llama celdilla primitiva porque es la de volumen mínimo que por traslación reproduce el cristal. Si hubiera otra de menor volumen y tomando n1, n2y n3 enteros, no encontraríamos necesariamente un punto reticular (Fig. 1.1). Es fácil comprender que a cada celdilla primitiva le corresponde un solo punto reticular (con su correspondiente base cristalina).
La celdilla primitiva no es única. Una forma de concretar la celdilla primitiva es bisecar por planos los segmentos que unen un punto reticular a sus próximos vecinos. En este caso recibe el nombre de celdilla elemental de Wigner-Seitz (Fig. 1.1) y cumple con los postulados anteriores. En particular, es evidente que sólo contiene un punto reticular.
Las redes cristalinas se llaman también redes de Bravais y hay 14 diferentes agrupadas en 7 sistemas cris talinos (Fig. 1.2).
Sistema | Redes | Malla | Redes de Bravais |
Cúbico | Simple
Centrado en cuerpo
Centrado en caras | a = b = c
α = β = γ = 90º |
|
Trigonal | Romboédrico | a = b = c
α = β = γ ≠ 90º |
|
Hexagonal | Simple | a = b ≠ c
α = β = 90º
γ ≠ 120º |
|
Tetragonal | Simple
Centrado en cuerpo | a = b ≠ c
α = β = γ = 90º |
|
Ortorrómbico | Simple
Centrado en bases
Centrado en cuerpo
Centrado en caras | a ≠ b ≠ c
α = β = γ = 90º |
|
Monoclínico | Simple
Centrado en bases | a ≠ b ≠ c
α = β = 90º ≠ γ |
|
Triclínico | Simple | a ≠ b ≠ c
α ≠ β ≠ γ |
|
Figura 1.2.- Propiedades de las redes de Bravais
De ellos el sistema cúbico es el de máxima simetría y además el sistema de los semiconductores usuales. Más concretamente estos cristalizan en el sistema cúbico centrado en caras (fcc) que puede verse en la Figura 1.2. Tienen asociada, normalmente, una base cristalina de dos átomos que pueden ser iguales (como en los semiconductores elementales: Silicio, Germanio…) o diferentes (Arseniuro de Galio, Fosfuro de Indio y otros semiconductores formados por asociación de elementos de los grupos III y V, o II y VI del sistema periódico). Para este caso se representa en la Fig. 1.3 la estructura atómica de un material diatómico (tipo blenda, que es la estructura cúbica del SZn). Es fácil ver que los átomos "blancos" marcan la estructura fcc y que cada átomo blanco tiene asociado otro "negro". Cuando todos los átomos son iguales tenemos el caso de las estructuras del tipo diamante.
Figura 1.3.- Estructura diatómica fcc
Figura 1.4.- Vectores primitivos de la red fcc (a) y bcc (b).
Respectivas celdillas de Wigner-Seitz.
Puede verse que esta estructura es compatible con enlaces de tipo tetraédrico, típico de los enlaces covalentes entre orbitales sp3. Una celdilla primitiva puede ser un romboedro, mientras que la celdilla de Wigner-Seitz es un dodecaedro rómbico regular (Fig.1.4). En la Tabla 1.1 se dan los parámetros de red (lado del cubo del sistema) para algunos semiconductores usuales.
TABLA 1.1.- Parámetros de red de semiconductores fcc
Semiconductor | a (Å) | Semiconductor | a (Å) |
Diamante | 3.6680 | GaP | 5.4504 |
SiC - (3C) | 4.3596 | GaAs | 5.6533 |
Si | 5.4307 | InAs | 6.0584 |
Ge | 5.6575 | InP | 5.8688 |
Algunos semiconductores de interés actual cristalizan en el sistema hexagonal. Son semiconductores que presentan enlaces de tipo tetraédrico, semejantes a los del Silicio. En la Figura 1.5a se representa este tipo de estructura, que se conoce con el nombre de Wurtzita (que es la forma hexagonal del sulfuro de zinc, SZn.). La estructura puede obtenerse a partir de prismas de base rómbica, de 60º de ángulo.
Normalmente se le asocian cuatro ejes: a1 , a2 y a3 , que forman entre sí ángulos de 120º y un cuarto eje, c , normal a los anteriores. Puede observarse, también, que
la red hexagonal procede del empaquetamiento compacto. La formación de este tipo de estructura puede imaginar
se
a partir de la colocación de diferentes capas de bolas en una caja: cada bola de una capa es tangente a seis de la misma capa, se apoya en tres de la capa inferior y, con otras dos de su capa, soporta una bola de la superior. Según la posición relativa de las diferentes capas (secuencia de deposición) pueden obtenerse diferentes redes hexagonales y una cúbica centrada en caras, coincidiendo el eje cr con la dirección (1,1,1). Con la periodicidad según cr , reciben diversos nombres: 2H, 3C, 4H, 6H ... .
Figura 1.5.- Red hexagonal : a) Estructura cristalina y b) estructura atómica (enlaces tetraédricos)
1.2.- LA RED RECÍPROCA
Para cada cristal su red de Bravais constituye la red directa. Asociada a ella existe la red recíproca.
Dados tres vectores (primitivos) de la red directa se obtienen los tres vectores base de la red recíproca por las relaciones:
(1.3)
que verifican
(1.4)
donde δij es la delta de Krönecker, que toma el valor 1 cuando los dos subíndices son igua
les y 0 en todos los demás.
Como ejemplo puede comprobarse que la red recíproca de una cúbica centrada en caras, es otra centrada en el cuerpo y viceversa (Fig. 1.4). También la red recíproca admite varias celdillas primitivas. Entre ellas es posible construir la de Wigner-Seitz, que en este caso recibe el nombre de 1ª Zona de Brillouin.
1.3.- PROPIEDADES DE LA RED RECÍPROCA: ÍNDICES DE MILLER
Sea T* r un vector de traslación de la red recíproca, que expresamos en la forma
con m1, m2 y m3 enteros.
Sea TN un vector de traslación de la red directa que expresamos en la forma (1.2)
Entonces:
1.3.1.- Familias de planos y direcciones.
El producto
, de acuerdo con (1.4), vale
siendo N, evidentemente, un número entero.
Para cada valor del producto
, y dado un vector T* , existen infinitos vectores
, cuya proyección sobre
es la misma, que cumplen que
y cuyas componentes son raíces de la ecuación diofántica:
En la Fig. 1.6 se representa una interpretación geométrica (bidimensional) de este hecho en la que se ha toma
do el origen en un punto reticular. Con esta condición los vectores
definen puntos reticulares contenidos en un plano que es normal a
.
, para todos los valores enteros de N, define una dirección en el cristal [m
1, m
2, m
3] y una familia de planos reticulares normales a ella (m
1, m
2, m
3).
1.3.2.- Distancias entre planos de la familia
Si m1, m2, m3 no tienen factores comunes, dos valores consecutivos de N (N y N+1) definen dos planos consecutivos de la familia y la distancia, d, entre ellos será tal que
es decir:
(1.5)
siendo
y
vectores de los puntos reticulares de los planos correspondientes a N y N+1.,
Figura 1.6.- Planos reticulares e índices de Miller
1.3.3.- Casos particulares: Índices de Miller
Es interesante ver cual es la intersección de la familia de planos sobre los ejes. Si la familia interseca a los ejes ar,br y cr con intervalos d
1, d
2 y d
3 (Fig. 1.5), medidos cuando se toma como unidad
,
,
, respectivamente, se tendrá que:
o sea:
ya que
; y así también para b y c.
Es decir, la familia de planos interseca a los ejes a distancias proporcionales a 1/m1, 1/m2 y 1/m3 (en términos del espaciado de la red).
Dicho de otra forma m1, m2 y m3 son proporcionales a los inversos
de las mencionadas distancias.
Si además se escogen los menores posibles (es decir, sin factores comunes), verifican (1.5) y, desde luego, definen una dirección y una familia de planos.
Además, se llaman índices de Miller, que se suelen denotar ordinariamente por (h,k,l). Este símb olo también indica la familia de planos, mientras que [h,k,l] precisa una dirección en el cristal.
Figura 1.7.- Índices de Miller en una red cúbica.
Un signo - sobre un índice indica que la intersección se ha verificado en el sentido negativo del eje.
Se usan también los símbolos:
{h,k,l} para indicar los planos de simetría equivalentes y
<h,k,l> para indicar las direcciones equivalentes.
Por ejemplo <h,k,l> [0,1,0], [0,0,1], [1,0,0].
En la Fig. 1.7 se representan los índices de Miller más usados y que corresponden a una red cúbica simple.
Para la red hexagonal de la Figura 1.5 y por excepción, al emplear cuatro ejes, los índices de Miller no son tres, sino cuatro
Grafito, con estructura atómica en láminas
Todos hemos oído hablar de los minerales o cristales natura
les. Los encontramos a diario sin necesidad de acudir a un museo. Una roca y una montaña están constituidas
por minerales, tan cristalinos como el azúcar de un terrón, un trozo de porcelana o el oro de un anillo. Sin embargo, sólo en ocasiones el tamaño de los cristales es lo suficientemente grande para llamar nuestra atención, como es el caso de estos bonitos ejemplares:
Imágenes propie
dad de Amethyst Galleries, Inc. Sólo se permite su uso para fines educacionales. Otras imágenes excelentes de minerales se pueden encontrar aquí.
|
Si bien el lector puede continuar sin problemas con la lectura de estas páginas, es posible que alguien se haga preguntas sobre cuál ha sido el desarrollo histórico de nuestro conocimiento primigenio sobre los cristales, y para ello le ofrecemos el apartado que podrá consultar a través de este enlace.
Los griegos llamaron cristal al cuarzo, κρνσταλλοσ (crystallos = frío + goteo), es decir, carámbanos de extraordi
naria dureza y muy fríos. Pero la formación de cristales no es exclusiva de los minerales, y los encontramos
también (aunque no necesariamente de modo natural) en los compuestos llamados orgánicos, e incluso en los ácidos nucléicos, en las proteínas, en los virus...
Con todo ello, nos preguntamos, ¿cuál es la peculiaridad que diferencia a los cristales de otros tipos de materiales?. Pues bien, la denominada estructura cristalina está caracterizada microscópicamente por la agrupación de iones, átomos o moléculas según un modelo de repetición periódica, y el concepto de periodicidad es sencillo de entender si pensamos en los motivos de una alfombra oriental, dibujos de la Alhambra, una formación de tipo militar...
Si nos fijamos con detenimiento, en estos dibujos hay siempre una fracción de los mismos que se repite. Pues bien, en los cristales, los átomos, los iones o las moléculas se empaquetan dando lugar a motivos que se repiten desde cada 5 Angstrom hasta las centenas de Angstrom (1 Angstrom = 10-8 cm), y a esa repetitividad, en tres dimensiones, la denominamos red cristalina. El conjunto que se repite, por traslación ordenada, genera toda la red (todo el cristal) y lo denominamos celdilla elemental ó celdilla unidad. Para generalizar, su contenido (átomos, moléculas, iones), o sea el motivo que se repite, puede describirse por un punto (el punto reticular) que representa a todos y cada uno de los constituyentes del motivo. Por ejemplo, cada soldado sería un punto reticular. En la materia condensada, un monocristal es un dominio, generalmente poliédrico, de un medio cristalino.
Pero hay ocasiones en las que la repetitividad se rompe, no es exacta, y precisamente esa característica es lo que diferencia a los cristales de los vidrios o en general de los llamados materiales amorfos (desordenados o poco ordenados)...
Modelo atómico en un material ordenado (cristal)
|
Modelo atómico de un vidrio
|
Sin embargo, la materia no siempre es totalmente ordenada, o totalmente desordenada, (cristalina o no cristalina), así que nos podemos encontrar
con toda una degradación contínua del orden (grados de cristalinidad) en los materiales, que nos lleva desde los perfectamente ordenados (cristalinos) hasta los completamen
te desordenados (amorfos). Esta pér
dida gradual de orden que se da en los materiales, es equivalente a lo que podemos observar en los pequeños deta
lles de esta formación gimnástica, que siendo en cierto modo ordenada, sin embargo hay unas personas con pantalones, otras con falda, con posturas algo distintas o ligeramente desalineados ...
En la estructura cristalina (ordenada) de los materiales inorgánicos, los motivos repetitivos son átomos o iones enlazados entre sí, de modo que generalmente no se distinguen unidades aisladas y de ahí su estabilidad y dureza (cristales iónicos, fundamentalmente)...
Estructura cristalina de un material inorgánico: el alfa-cuarzo
Donde sí se distinguen claramente unidades aisladas, es en los llamados materiales orgánicos, en donde aparece el concepto de entidad molecular (molécula), formada por átomos enlazados entre sí, pero en donde la unión entre las moléculas, dentro del cristal, es mucho más débil (cristales moleculares). Son generalmente materiales más blandos e inestables que los inorgánicos...
Estructura cristalina de un material orgánico: cinnamida
|
En las proteínas también existen unidades moleculares, como en los materiales orgánicos, pero mucho más grandes. Las fuerzas que unen estas moléculas son también similares, pero su empaquetamiento en los cristales deja muchos huecos que se rellenan con agua no ordenada y de ahí su extrema inestabilidad.
Estruc
tura cristalina de una proteína: AtHal3. Se muestran los grandes huecos que deja el empaquetamiento cristalino
|
Los distintos modos de empaquetamiento en un cristal dan lugar a las llamadas fases polimórficas (fases alotrópicas para los elementos), que confieren a los cristales (a los materiales) distin
tas propiedades. Por ejemplo, de todos son conocidas las distintas apariencias y propiedades del elemento químico Carbono, que se presenta en la Naturaleza en dos formas cristalinas muy diferentes, el diamante y el grafito:
Diamante (carbono puro)
|
Grafito (carbono puro)
|
El grafito es negro, blando y un lubricante excelente, lo que sugiere que sus átomos deben estar distribuidos (empaquetados) de un modo que puedan entenderse sus propiedades. Sin embargo, el diamante es transparente y muy duro, por lo que debe esperarse que sus átomos estén muy fijamente unidos. En efecto, sus estructuras sub-microscópicas (a nivel atómico) dan cuenta de sus diferencias...
Diamante, con estructura muy compacta
| |
En el diamante, cada átomo de carbono está unido a otros cuatro en forma de una red tridimensional muy compac
ta (cristales covalentes), de ahí su extrema dureza y su caracter aislante. Sin embargo, en el grafito los átomos de carbono están distribuidos en forma de capas paralelas separadas entre sí mucho más de lo que se separan entre sí los átomos de una misma capa. Debido a esta unión tan debil entre las capas atómicas del grafito, los deslizamientos de unas frente a otras ocurre sin gran esfuerzo, y de ahí su capacidad lubricante, su uso en lapiceros y su utilidad como conductor.
Y, hablando de conductores, en los cristales metálicos los átomos de metal se estructuran de forma que hay electrones deslocalizados que dan cohesión al conjunto y que son responsables de sus propiedades eléctricas.
Los cuerpos en
estado vítreo se caracterizan por presentar un aspecto sólido con cierta dureza y rigidez y que ante esfuerzos externos moderados se deforman de manera generalmente elástica. Sin embargo, al igual que los líquidos, estos cuerpos son ópticamente isótopos, transparentes a la mayor parte del espectro electromagnético de radiación visible. Cuando se estudia su estructura interna a través de medios como la
difracción de rayos X, da lugar a bandas de difracción difusas similares a las de los líquidos. Si se calientan, su
viscosidad va disminuyendo paulatinamente –como la mayor parte de los líquidos- hasta alcanzar valores que permiten su deformación bajo la acción de la gravedad, y por ejemplo tomar la forma del recipiente que los contiene como verdaderos líquidos. No obstante, no presentan un punto claramente marcado de transición entre el estado sólido y el líquido o "
punto de fusión".
Todas estas propiedades han llevado a algunos investigadores a definir el estado vítreo no como un estado de
la materia distinto, sino simplemente como el de un líquido subenfriado o líquido con una viscosidad tan alta que le confiere aspecto de sólido sin serlo. Esta hipótesis implica la consideración del estado vítreo como un estado metaestable al que una energía de activación suficiente de sus partículas debería conducir a su estado de equilibrio, es decir, el de sólido cristalino.
Figura 1: Cristal organizado de SiO
2.
En apoyo de esta hipótesis se aduce el hecho experimental de que, calentado un cuerpo en estado vítreo hasta obtener un comportamiento claramente líquido (a una temperatura suficientemente elevada para que su
viscosidad sea inferior a los 500
poises, por ejemplo), si se enfría lenta y cuidadosamente, aportándole a la vez la energía de activación necesaria para la formación de los primeros corpúsculos sólidos (siembra de microcristales, presencia de superficies activadoras, catalizadores de nucleación, etc.) suele solidificarse dando lugar a la formación de conjuntos de verdaderos cristales sólidos.
Todo parece indicar que los cuerpos en estado vítreo no presentan una ordenación interna determinada, como ocurre con los sólidos cristalinos. Sin embargo en muchos casos se observa un desorden ordenado,
es decir, la presencia de grupos ordenados que se distribuyen en el espacio de manera total o parcialmente aleatoria.
Esto ha conducido a diferentes investigadores a plantear diversas teorías sobre la estructura interna del estado vítreo, tanto de tipo geométrico, basadas tanto en las teorías atómicas como en las de tipo energético.
Figura 2: SiO
2 en estado vítreo.
Según la teoría atómica geométrica, en el sílice sólido cristalizado el átomo de silicio se halla rodeado de cuatro átomos de oxígeno situados en los vértices de un tetraedro cada uno de los cuales le une a los átomos de silicio vecinos. Una vista en planta de este ordenamiento se esquematiza en la figura 1, en la que el cuarto oxígeno estaría encima del plano de la página. Cuando este sílice pasa al estado vítreo, la ordenación tetraédrica se sigue manteniendo a nivel individual de cada átomo de silicio, aunque
los enlaces entre átomos de oxígeno y silicio se realizan en un aparente desorden, que sin embargo mantiene una organización unitaria inicial (véase la figura 2)
No obstante, ninguna de estas teorías es suficiente para explicar el comportamiento completo de los cuerpos vítreos aunque pueden servir para responder, en casos concretos y bien determinados, a algunas de las pregun
tas que se plantean.
Las sustancias susceptibles de presentar un estado vítreo pueden ser tanto de naturaleza inorgánica como orgánica, entre otras:
- Elementos químicos: Si, Se, Au-Si, Pt-Pd, Cu-Au.
- Óxidos: SiO2, B2O3, P2O5, y algunas de sus combinaciones.
- Compuestos: As2S3, GeSe2, P2
S3, BeF2, PbCl2, AgI, Ca(NO3)2.
- Siliconas (sustancias consideradas como semiorgánicas
)
- Polímeros orgánicos: tales como glicoles
, azúcares, poliamidas, poliestirenos o polietilenos, etc.
Vidrios comunes
Sílice vítrea
Se denomina sílice a un óxido de silicio de fórmula química SiO2. Se presenta en estado sólido cristalino bajo diferentes formas enanciotrópicas. Las más conocidas son el cuarzo (la más frecuente y estable a temperatura ambiente), la cristobalita y las tridimitas. Además de estas formas, se han llegado a identificar hasta veintidós fases diferentes, cada una de ellas estable a partir de una temperatura perfectamente determinada.
Cuando se calienta el cuarzo lentamente, este va pasando por distintas formas enanciotrópicas hasta alcanzar su punto de fusión a 1.723 °C. A esta temperatura se obtiene un líquido incoloro y muy viscoso que si se enfría con relativa rapidez, se convierte en una sustancia de naturaleza vítrea a la que se suele denominar vidrio de cuarzo.
Este vidrio de cuarzo presenta un conjunto de propiedades de gran utilidad y de aplicación en múltiples disciplinas: en la investigación científica, tecnológica, en la vida doméstica y en general en todo tipo de industria. Se destacan como más relevantes las siguientes:
- Gran resistencia al ataque por agentes químicos, por lo que es muy utilizado como material de laboratorio. Sólo es atacado, de manera importante a temperatura ambiente, por el ácido fluorhídrico en sus diferentes formas (gaseosa o disolución). A temperaturas superiores a 800 °C reacciona a velocidades apreciables con sales alcalinas o alcalinotérreas, en particular con sales sódicas, tales como el carbonato o el sulfato sódicos.
- Si bien su densidad a temperatura ambiente es relativamente alta (2,2 g/cm3) su coeficiente de dilatación lineal medio a temperatu
ras inferiores a los 1.000 °C es extremadamente pequeño: se sitúa en 5,1•10-7 K-1, lo que permite, por ejemplo, calentarlo al rojo
y sumergirlo bruscamente en agua, sin que se fracture. El número de aplicaciones que esta propiedad suscita
es elevado.
- Su índice de refracción a la radiación electromagnética visible es 1,4589,
lo que le hace apto para instrumentos ópticos en general.
- Su resistividad eléctrica es del orden de los 1020 ohm·cm en condiciones normales lo que le convierte en uno de
los mejores aislantes eléctricos conocidos, con todas las aplicaciones que de ello se derivan en la industria moderna.
- La absorción de la radiación electromagnética del vidrio de cuarzo muestra una gran transparencia a la luz visible así como en las bandas correspondientes al espectro ultravioleta, lo que le hace especialmente apto para la fabricación de lámparas y otros instrumentos generadores de este tipo
de radiación.
Otras propiedades, sin embargo, dificultan su elaboración y utilización. En particular, las siguientes:
Viscosidadesde la sílice vitrea(Según Brückner)
Temperatura | Viscosidad |
°C | μ (poises) |
1.800 | 107,21 |
2.000 | 106,10 |
2.200 | 105,21 |
2.400 | 104,50 |
2.600 | 103,90 |
2.800 | 103,40 |
- El punto de fusión de la sílice cristalizada depende de la variedad enanciotrópica que se trate. Para la variedad estable a partir de los 1.470 °C (la α-cristobalita) este
es de 1.723 °C. Estas son temperaturas que no pueden alcanzarse fácilmente, salvo en instalaciones muy especializadas. Por esta razón, la fabricación del vidrio de cuarzo ha sido siempre rara y cara. Industrialmente, su producción es bastante limitada si se la compara con otros tipos de vidrio.
- Su viscosidad en estado vítreo presenta una gran variación con la temperatura, pasando de valores superiores a 107 poises (aspecto totalmente sólido) por debajo de los 1.800 °C, a 103,5 poises a 2.758 °C (aspecto pastoso y moldeable).
- Las viscosidades toman valores tan sumamente elevados que deben expresarse como potencias de diez. En general, las viscosidades de los vidrios suelen darse bajo la forma de su logaritmo decimal. Para obtener el vidrio de cuarzo es necesario partir de un cuarzo cristalizado de gran pureza, finamente molido, que se somete a altas temperaturas. El líquido que se obtiene presenta gran cantidad de burbujas diminutas de aire ocluido entre los granos del cuarzo, que le dan un aspecto lechoso, traslúcido, al que se suele denominar gres de cuarzo y cuyas aplicaciones como recipiente resistente al ataque químico o a los cambios bruscos de temperatura son frecuentes. Sin embargo, resulta totalmente inútil para aplicaciones en las que se precise una gran transparencia (lámparas de rayos UVA, lámparas de cuarzo y óptica en general). Para estas últimas es necesario que durante el proceso de fusión se puedan desprender esas burbujas gaseosas ocluidas. Para que ese desprendimiento fuera efectivo bajo la presión atmosférica y a una velocidad aplicable industrialmente, se precisaría que el líquido presentara una viscosidad por debajo de los 200 poises, lo que en el caso de la sílice líquida implicaría temperaturas del orden de los 3.600 °C. En la práctica para poder desgasificar el vidrio de sílicese funde el cuarzo a temperaturas próximas a los 2.000 °C en recipientes donde se hace el vacío, complicando mucho la tecnología de su producción y, por consiguiente, encareciendo el producto.
- La resistencia a la tracción en estado puro, en condiciones normales y con una superficie perfectamente libre de toda fisura, es de unos 60 kbar. Esta gran resistencia (superior a la del acero) se ve fuertemente disminuida por imperfecciones en la superficie del objeto, por pequeñas que estas sean.
- Su módulo de Young a 25 °C es de 720 kbar y el de torsión 290 kbar. Cuando se le somete a un esfuerzo de tracción mecánica a temperaturas próximas a la ambiente,
se comporta como un cuerpo perfectamente elástico con una función alargamiento/esfuerzo lineal, pero sin prácticamente zona plástica cercana a su límite de rotura. Esta propiedad, unida a la resistencia mecánica a la tracción anteriormente citada, lo convierten en un producto frágil. Al golpearlo, o se deforma elásticamente y su forma no se altera o, si se sobrepasa su límite de elasticidad, se fractura.
Silicato sódico
Las sales más comunes de sodio tienen puntos de fusión por debajo de los 900 °C. Cuando se calienta una mezcla íntima de cuarzo finamente dividido con una sal de estos metales alcalinos, por ejemplo Na2CO3, a una temperatura superior a los 800 °C se obtiene inicialmente una fusión de la sal alcalina, cuyo líquido rodea a los granos de cuarzo, produciéndose una serie de reacciones que pueden englobarse en la resultante siguiente:
SiO
2 (s) + Na
2CO
3 (s) Na
2SiO
3 (s) + CO
2 (g) H = -5,12 kcal/mol
Esta reacción, levemente exotérmica, desprende anhídrido carbónico gaseoso -que burbujea entre la masa en fusión- y conduce a un primer silicato sódico, de punto de fusión 1.087 °C.
De acuerdo con la
termodinámica, la mezcla de dos sustancias de puntos de fusión diferentes presenta un “Punto de Liquidus”
7 que se sitúa entre los de las dos sustancias en contacto. De esta forma la mezcla de la sílice y el silicato sódico formado da lugar a un producto de SiO
2 y silicatos, ya en estado líquido a temperaturas que no sobrepasan los 1.200 °C, lejos de los más de 2.000 °C necesarios para preparar el vidrio de cuarzo.
Al producto así obtenido se le da corrientemente el nombre genérico de
silicato sódico, si bien con esta denominación se identifica a un conjunto de productos derivados de la
fusión del cuarzo con sales sódicas (generalmente carbonatos) en diferentes proporciones de uno y otro componente. Industrialmente se preparan silicatos sódicos con proporciones molares de cada componente situadas entre:
-
- 3,90 moles de SiO2 / 1 mol
de
Na2O y 1,69 moles de SiO2 / 1
mol de Na2O
- Nota
- La proporción estequiométrica de un metasilicato sódico puro sería de 1 mol
de SiO2 / 1 mol de Na2O
Estos silicatos sódicos presentan un aspecto vítreo, transparente y muy quebradizo. Para alcanzar una viscosidad del orden de los 1.000 poises (necesaria para su moldeado) se precisan temperaturas que, en función de su composición, oscilan entre los 1.220 °C para el silicato más rico en SiO2, y los 900 °C para el más pobre. Son muy solubles en agua: entre un 35% y un 50% en peso
de silicato, según el contenido en SiO2. Su falta de rigidez mecánica y su solubilidad en agua les hacen inútiles como sustitutos del vidrio de cuarzo en ninguna de sus aplicaciones.
Raramente se presentan en la industria en forma sólida, sino bajo la forma de disolución acuosa. Su solución
en agua se utiliza como pegamento cerámico muy eficaz o como materia prima para la producción mediante hidrólisis de
gel de sílice, sustancia usada como absorbente de la humedad (torres de secado de gases, etc.) o como componente de ciertos productos tales como neumáticos para vehículos y otras aplicaciones en la industria química.
Su producción se realiza en hornos continuos de balsa calentados mediante la combustión de derivados del petróleo y frecuentemente también con energía eléctrica, a temperaturas lo más elevadas posibles (dentro de
una cierta rentabilidad) con el fin de aumentar la productividad del horno. Estas temperaturas suelen situar
se entre los 1.400 °C y los 1.500 °C.
Vidrios de silicato sódico
Con el fin de obtener un producto con propiedades similares a las del vidrio de cuarzo a temperaturas alcanzables por medios técnicamente rentables, se produce un vidrio de silicato sódico al que se le añaden otros componentes que le hagan más resistente mecánicamente, inerte a los agentes químicos a temperatura ambiente -muy particularmente al agua- y que guarden su transparencia a la luz, al menos en el espectro visible.
Estos componentes son metales alcalinotérreos, en particular magnesio, calcio o bario, además de aluminio y otros elementos en menores cantidades, algunos de los cuales aparecen aportados como impurezas por las mate
rias primas (caso del hierro, el azufre u otros). Las materias primas que se utilizan para la elaboración de vidrios de este tipo se escogen entre aquellas que presenten un menor costo:
- Para el cuarzo:
- Arenas feldespáticas, de pureza en SiO2 superior al 95% y con el menor contenido en componentes férricos posible (entre un 0,15%
y 0,01% en términos de Fe2O3)
- Cuarcitas molidas
- Para el sodio:
- Carbonatos sódicos naturales (yacimientos de EE.UU. y África).
- Carbonato sódico sintético, el más utilizado en Europa.
- Sulfato sódico sintético, subproducto de l
Para el sodio:
Carbonatos sódicos naturales (yacimientos de EE.UU. y África).
Carbonato sódico sintético, el más utilizado en Europa.
Sulfato sódico sintético, subproducto de la industria química.
Nitrato sódico natural (nitrato de Chile).
Cloruro sódico o sal común.
Estos tres últimos, utilizados en pequeñas proporciones, debido al desprendimiento de gases contaminantes durante la elaboración del vidrio: SOX, NOX, Cl2.
Para el Calcio:
Calizas naturales.
Para el Magnesio:
Dolomitas naturales.
Para el Bario:
Sulfato bárico natural (baritina).
Para el Aluminio:
Feldespatos naturales (caolines).
La producción industrial de este tipo de vidrios se realiza, al igual que en el caso de los silicatos sódicos, en hornos para vidrio, generalmente de balsa, calentados mediante la combustión de derivados del petróleo con apoyo, en muchos casos, de energía eléctrica a temperaturas que oscilan entre los 1.450 °C y los 1.600 °C. En estos hornos se introduce una mezcla en polvo ligeramente humedecida (\sim5% de agua) y previamente dosificada de las materias primas ya citadas. Esta mezcla de materias minerales reacciona (a velocidades apreciables y, evidentemente, cuanto mayores mejor) para formar el conjunto de silicatos que, combinados y mezclados, darán lugar a esa sustancia a la que se denomina vidrio común
.
PROPIEDADES DEL VIDRIO COMÚN
Las propiedades del vidrio común, son una función tanto de la naturaleza como de las materias primas como de la composición química del producto obtenido. Esta composición química se suele representar en forma de porcentajes en peso de los óxidos más estables a temperatura ambiente de cada uno de los elementos químicos que lo forman. Las composiciones de los vidrios silicato sódicos más utilizados se sitúan dentro de los límites que se establecen en la tabla adjunta.
Intervalos de composición frecuentes en los vidrios comunes
Componente Desde ... % ... hasta %
SiO2 68,0 74,5
Al2O3 0,0 4,0
Fe2O3 0,0 0,45
CaO 9,0 14,0
MgO 0,0 4,0
Na2O 10,0 16,0
K2O 0,0 4,0
SO3 0,0 0,3
Muchos estudios –particularmente en la primera mitad del siglo XX– han intentado establecer correlaciones entre lo que se denominó la estructura interna del vidrio –generalmente basada en teorías atómicas– y las propiedades observadas en los vidrios. Producto de estos estudios fueron un conjunto de relaciones, de naturaleza absolutamente empírica, que representan de manera sorprendentemente precisa muchas de esas propiedades mediante relaciones lineales entre el contenido de los elementos químicos que forman un vidrio determinado (expresado bajo la forma del contenido porcentual en peso de sus óxidos más estables) y la magnitud representando dicha propiedad. Curiosamente, las correlaciones con las composiciones expresadas en forma molar o atómica son mucho menos fiables.
Composición "tipo" de vidrio de
silicato sódico
SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O SO3
73,20 1,51 0,10 10,62 0,03 13,22 1,12 0,20
Los contenidos en MgO, Fe2O3 y SO3 son consecuencia de las impurezas de la caliza, arena y el sulfato sódico, respectivamente.
Fuente
Coeficientes para el cálculo de propiedades del vidrio
Coeficientes para el cálculo de propiedades del vidrio8
Propiedad Valor Unidades Fuente
Densidad a 25 °C(1) 2,49 g/cm3 Gilard & Dubrul
Coeficiente de dilatación lineal a 25 °C(2) 8,72•10-6 °C-1 Wilkelman & Schott
Conductividad térmica a 25 °C 0,002 cal/cm.s.°C Russ
Tensión superficial a 1200 °C 319 dinas/cm Rubenstein
Índice de refracción (a 589,3 nm)(3) 1,52 - Gilard & Dubrul
Módulo de elasticidad a 25 °C 719 kbar Appen
Módulo de Poisson a 25 °C 0,22 - Wilkelman & Schott
Resistencia a la tracción a 25 °C(4) \sim (900) bar Wilkelman & Schott
Constante dieléctrica (4.5.188 Hz) 7,3 - Appen & Bresker
Resistencia eléctrica a 1100 °C 1,06 Ώ.cm
Resistencia eléctrica a 1500 °C 0,51 Ώ.cm
Calor específico a 25 °C 0,20 cal/g/°C Sharp & Ginter
Atacabilidad química DIN 12111(5) 13,52 ml de HCl 0,01N R. Cuartas
Nota
La viscosidad se expresa en la figura 3(6).
Fuente:
Estas páginas fueron anunciadas por la Unión Internacional de Cristalografía (IUCr), han sido seleccionadas como uno de los sitios web de interés para el aprendizaje y educación en cristalografía, y recogidas como tal en la web conmemorativa del Año Internacional de la Cristalografía
.
Martín Martínez Ripoll (1946- ) y Félix Hernández Cano (1941-2005+) fueron coautores de la primera versión de estas páginas. Pero, ¿dónde han quedado "aquellos tiempos de gloria"?.
Figura 3: Logaritmo de la viscosidad según temperaturas (según R. Cuartas).
La absorción (o transparencia)(7) a la luz de los vidrios de silicato sódico en la zona del espectro visible (0,40 μ a 0,70 μ) depende de su contenido en elementos de transición (Ni y Fe en el ejemplo). Sin embargo, tanto en el ultravioleta como en el infrarrojo el vidrio se comporta prácticamente como un objeto casi opaco, independientemente de cualquiera de estos elementos.
Notas
(1) La densidad es algo más elevada que en el cuarzo fundido 2,5 frente a 2,2 g/cm3).
(2) El coeficiente de dilatación térmica lineal a temperatura ambiente, es notablemente más alto que el de la sílice fundida (unas 20 veces más), por lo que los objetos de vidrios de silicato sódico son menos resistentes al "choque térmico".
(3) Su índice de refracción es ligeramente mayor que el del vidrio de cuarzo y puede aumentarse mediante el uso de aditivos.
(4) La resistencia a la tracción en cualquier tipo de vidrio es una magnitud que depende extraordinariamente del estado de la superficie del objeto en cuestión, por lo que su cuantificación es compleja y poco fiable.
(5) La resistencia al ataque químico o físico (disolución) de los vidrios comunes es una función de su composición química fundamentalmente. No obstante, en todos ellos esta resistencia es elevada. Se suele medir mediante una serie de pruebas tipificadas internacionalmente. Entre las más usadas:
DIN 12116
DIN 52322
DIN 12111
La atacabilidad de los vidrios también se modifica mediante tratamientos superficiales: con SO2, Sn, Ti, y otros.
(6) Para moldear un vidrio es necesaria una viscosidad que se sitúa entre 1.000 poises y 5.000 poises. En el caso de la sílice son necesarias temperaturas de más de 2.600 °C, en tanto que para los vidrios comunes basta con 1.200 °C, aproximadamente.
(7) La absorción de la luz se ve influenciada por la estructura íntima de estas materias transparentes. En el caso de una estructura Si-O la absorción de fotones es baja, incluso para longitudes pequeñas de onda (transparencia a los rayos UVA). No es así cuando a esta sencilla estructura se le añaden otros elementos (Na, Mg, Ca, etc.) que inciden decisivamente en la absorción a las longitudes de onda pequeñas (menores de 200 nm) y en las infrarrojas (superiores a 700 nm). Por otra parte, la presencia en la red vítrea de elementos de transición (ver Tabla periódica de los elementos) produce absorciones selectivas de radiación visible, lo que permite, entre otras cosas, colorear los vidrios con una amplia gama de matices.
RECICLAJE DEL VÍDRIO
Depósito público para reciclaje de vidrio. En éste, existen tres divisiones para separar el vidrio según su color: transparente, verde y ámbar.
El vidrio es un material totalmente reciclable y no hay límite en la cantidad de veces que puede ser reprocesado. Al reciclarlo no se pierden las propiedades y se ahorra una cantidad de energía de alrededor del 30% con respecto al vidrio nuevo.
Para su adecuado reciclaje el vidrio es separado y clasificado según su tipo el cual por lo común está asociado a su color, una clasificación general es la que divide a los vidrios en tres grupos: verde, ámbar o café y transparente.
Contenedor de recogida de botellas de vidrio en España.
El proceso de reciclado después de la clasificación del vidrio requiere que todo material ajeno sea separado como son tapas metálicas y etiquetas, luego el vidrio es triturado y fundido junto con arena, hidróxido de sodio y caliza para fabricar nuevos productos que tendrán idénticas propiedades con respecto al vidrio fabricado directamente de los recursos naturales.9
En algunas ciudades del mundo se han implementado programas de reciclaje de vidrio, en ellas pueden encontrarse contenedores especiales para vidrio en lugares públicos.
En ciertos casos el vidrio es reutilizado, antes que reciclado. No se funde, sino que se vuelve a utilizar únicamente lavándolo (en el caso de los recipientes). En acristalamientos, también se puede aprovechar el vidrio cortándolo nuevamente (siempre que se necesite una unidad más )
VÍDRIO:
1) Vidrio del bosque
2)Vidrio flotado
3)Vidrio aislante
4)Vidrio armado
5)Vidrio templado
6)Vidrio laminado
7)Vidrio soplado
8)Vidrio opalino
9)Vidriado
10)Cristal
1) VÏDRIO DEL BOSQUE:
Vidrio del bosque o en alemán waldglas se aplica a vidrio medieval producido en el noroeste de Europa en el período que va del 1000 al 1700, utilizando cenizas de madera y arena como materia prima, y preparado en fábricas denominadas casas de vidrio en las zonas boscosas. Se caracteriza por vidrios de colores verdosos-amarillentos, los productos más antiguos a menudo presentan un diseño tosco y calidad pobre, este tipo de vidrio era utilizado para fabricar cuencos de uso cotidiano y luego en mayor medida para producir vidrios coloreados para los vitrales de las iglesias. Su composición y método de fabricación es distinto del de los vidrios romano y pre-romano de la zona del mediterráneo y vidrios islámicos contemporáneos del este.
Fabricación del vidrio del bosque
Estructura atómica típica del vidrio.
Es importante diferenciar entre la fabricación de vidrio a partir de la materia prima y el modelado posterior del vidrio, mediante el cual se producen los artículos utilitarios o decorativos al fundir trozos de vidrio en bruto o cullet que pueden haber sido producidos en otra parte o reciclando vidrio viejo. El vidrio está formado por cuatro componentes principales:
Un material base – que constituye la red atómica que forma la matriz del vidrio.4 Esto es óxido de silicio (SiO2), el cual en la antigüedad era incorporado en forma de cuarzo molido,5 y a partir de la era romana se incorpora con el uso de arena.
Un álcali fundente – para disminuir la temperatura de fusión del silicio, permitiendo alcanzar la fusión a temperaturas conseguibles en la época. En épocas antiguas, las cenizas de plantas ricas en sodio que crecían en zonas áridas alrededor de la zona este del Mediterráneo eran utilizadas como fuente de óxido de sodio (Na2O) que hacia de fundente. En épocas romanas se utilizaba el mineral denominado natrón, una mezcla que se encuentra en la naturaleza a base de sales de sodio alcalinas, extraídas de la zona de Wadi-Natrun en Egipto. Los fabricantes de vidrio islámicos posteriores a los romanos volvieron a utilizar cenizas de plantas ricas en sodio,6 mientras que en el norte de Europa, se desarrolló un método que utilizaba cenizas de madera para proveer potasio (K2O) como fundente. También se puede utilizar óxido de calcio (cal,CaO) como fundente.4
Un estabilizador - para evitar que el vidrio se disuelva en agua y aumentar la resistencia a la corrosión. El más efectivo es cal (CaO) aunque la alumina(Al2O3) y el óxido de magnesio (MgO) pueden producir el mismo efecto.4 Estos minerales pueden ya estar presentes en distintas proporciones en la arena misma.
Un colorante u opacador - Estos pueden estar presentes en forma natural en el vidrio producto de las impurezas en las materias primas o puede ser agregado en forma deliberada al vidrio fundido en forma de minerales o como escoria producto de procesos de fusión o conformado de metales. Los elementos más utilizados son hierro, cobre, cobalto, manganeso, estaño, antimonio y plomo. La opacidad puede ser producto de burbujas en el vidrio o la inclusión de agentes específicos tales como estaño y antimonio. El color resultante y la opacidad de una determinada composición pueden ser controlados mediante la temperatura y las condiciones redox dentro del horno.
Los vasos más antiguos realizados con vidrio del bosque se caracterizan por composiciones sumamente variadas y una calidad pobre, a menudo su color es verdoso o amarronado, sus paredes son gruesas con inclusiones y burbujas. Lo cual sugiere que el uso de cenizas de madera no era meramente un reemplazo de la materia prima sino que requirió del desarrollo de una nueva tecnología con sus dificultades asociadas.
La arena probablemente era recolectada de las orillas de los ríos, donde era relativamente limpia y tenía uniformidad en el tamaño de las partículas. La tala, transporte, secado y almacenamiento de madera tanto para cenizas como para combustible de los hornos era una labor intensa y requería un alto nivel de organización.
Preparación de las cenizas[editar · editar código]
Theophilus recomendaba el uso de madera de haya, los análisis han mostrado una alta proporción de CaO cuando crece en suelos calcáreos. De cualquier manera la leña usada, la cantidad de potasa y CaO que provee, también otros componentes que pueden afectar el color y opacidad, varia con la edad del árbol y que parte se utiliza, la química del suelo, el clima, la época del año en que es cortado el árbol, y el secado de la madera cuando es quemada, factores en los que el fabricante de vidrio tiene poco control. Esta variabilidad explica los problemas que el fabricante de vidrio enfrenta al tratar de producir un vidrio de buena calidad. Grandes cantidades de cenizas tienen que ser preparadas y mezcladas juntas para dar la homogeneidad necesaria para una composición de vidrio predecible. La productividad típica de la ceniza de haya es del 1% entonces usando la receta de Theophilus de dos partes de arena por una de ceniza, quiere decir que se necesitaran 63 kg de madera de haya para producir un kilo de vidrio. Se ha estimado que, incluyendo el combustible, entre 150–200 kg de madera serían necesarias por kilo de vidrio.
FRITADO
La preparación de ceniza y arena era calentada, pero no fundida, a una temperatura relativamente baja (arriba de 900 °C) en un proceso conocido como fritado. Theophilus especificaba ‘por espacio de un día y una noche’ Este proceso, que podía ser monitoreado por cambios en el color a medida que la temperatura aumentaba, causaba un decrecimiento en el volumen, luego se lo cargaba en el crisol para la fase final de fundido, minimizando así el número de veces que el horno debía ser abierto, y consolidando el fino polvo de las cenizas que podían volar dentro del horno causando contaminación.
FUNDIDO
Las etapa final era el fundido del material fritado en crisoles en un horno cerrado de manera de obtener vidrio fundido. Para ello era preciso que en el interior del horno se alcanzaran las más elevadas temperaturas ya que la fusión rápida y el uso de menor cantidad de fundente mejoraba la calidad del vidrio. El cambio de natrón a potasio representó un aumento de unos 200 °C en la temperatura de fusión del vidrio que ahora era de unos 1350 °C, por lo que fue preciso modificar de manera importante la tecnología del horno y el desarrollo de cerámicos refractarios capaces de aguantar estas condiciones de trabajo.5 A estas altas temperaturas, la arcilla normal reacciona químicamente con el vidrio.
TRABAJADO
Unas vez que el vidrio se encuentra fundido el mismo es soplado conformando recipientes o cilindros que luego se abren para formar hojas para vitrales. La etapa final es el templado del vidrio terminado para evitar daños por las tensiones de contracció
DISEÑO DEL HORNO
VÏDRIO FLOTADO (Vidriexsa :: Vidrios Extremeños
www.vidriexa.es)
El vidrio flotado consiste en una plancha de vidrio fabricada haciendo flotar el vidrio fundido sobre una capa de estaño fundido. Este método proporciona al vidrio un grosor uniforme y una superficie muy plana, por lo que es el vidrio más utilizado en la construcción. Se le denomina también vidrio plano
Tradicionalmente denominado cristal plano, el Float es insustituible cuando se desea obtener una visión clara sin distorsión óptica y constituye la materia prima por excelencia para ser transformado en vidrio templado, laminado, fabricar espejo y manufacturar unidades de doble vidriado hermético.
Inventado por Pilkington en 1952, la fabricación de vidrio plano mediante el proceso Float consiste en una lámina de vidrio en estado de fusión que flota a lo largo de una superficie de estaño líquido. En el baño "Float" la masa vítrea permanece confinada en un medio cuya atmósfera es químicamente controlada, a una temperatura lo suficientemente alta y durante un tiempo prolongado para eliminar irregularidades y nivelar sus superficies hasta tornarlas planas, paralelas y brillantes, pulidas a fuego. Debido a que la superficie del estaño es plana, la del cristal así obtenido también lo es. La lámina es enfriada lentamente mientras sigue flotando sobre el estaño, hasta que con sus superficies lo suficientemente endurecidas, emerge del mismo y continua avanzando sobre rodillos, sin que éstos afecten su cara inferior.
Una planta Float opera sin parar entre 11-15 años, produce alrededor de 6.000 kilómetros de vidrio en un año en espesores que van desde 0.4 mm. hasta 25 mm en anchos de hasta 3 metros.